
HEAT AND GEOMETRY

JULIE ROWLETT

1. 2018.07.09 Pre-Lecture Notes

The purpose of the pre-lecture notes is to prepare you for the forthcoming lecture.
It’s a pedagogically known fact that taking your own notes during the actual lecture
is beneficial to learning and memory. For that reason, everyone is encouraged to
take notes during the lecture. After the lecture, a second set of notes will be made
available. It is advisable to review these notes together with your own lecture
notes to solidify your understanding of the material. Moreover, there are several
exercises throughout the post-lecture notes which are recommended.

1.1. Summary of the 2018.07.09 lecture. We shall:

(1) Define the heat operator and Laplace operator on a Riemannian manifold.
(2) Study the initial value problem for the heat equation on Rn.
(3) In this context, we will use the Fourier transform and convolutions, together

with some basics about L1 and L2.
(4) We’ll use these tools to solve the IVP for the heat equation on Rn and

thereby obtain the Euclidean heat kernel.
(5) We shall make some elementary observations about this heat kernel.
(6) The heat kernel is for the most part well-behaved, but it has a certain

discontinuity. To resolve this, we will introduce the heat space.
(7) In this context, we will define manifolds with corners, p-submanifolds, stan-

dard blowups and parabolic blowups.

1.2. Warm-up exercises. To get warmed up for the first lecture and this lecture
series in general, here are a few fun exercises:

(1) Write up your own explanation of the physical derivation of the heat equa-
tion based on the laws of Thermodynamics. It may be simplest to do this
first in one dimension and then to explain how the derivation generalizes
to all dimensions. If you’re curious and bored, read about Joseph Fourier.
Apparently he was somewhat of a character...

(2) Track down the first ever published “Journal of Differential Geometry.”
Look for an article called Curvature and eigenvalues of the Laplacian.

(3) Try to wrap your head around the notion of blowing up. See for example
[
tapsit
2, p. 252–259] and [

htap
1, §2.1–2.2]. There are other references as well; see

what you can find!
convolutionapprox

1.3. Supplementary material: convolution approximation theorem in one
dimension. This theorem shall be related to the fact that the heat kernel gives
the solution to the heat equation which converges as t ↓ 0 to the initial data. The
proof of the analogous result in Rn shall be an exercise in the mini-course. Feel
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free to skip this if it’s too basic for ya, otherwise, feel free to use this as a bit of a
warm-up as well as to get the main ideas for the general case of Rn.

Theorem 1. Let g ∈ L1(R) such that∫
R
g(x)dx = 1.

Define

α =

∫ 0

−∞
g(x)dx, β =

∫ ∞
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist
for all points of R. Assume that either f is bounded on R or that g vanishes outside
of a bounded interval. Let, for ε > 0,

gε(x) =
g(x/ε)

ε
.

Then

lim
ε→0

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.

Proof. We would like to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy = αf(x+) + βf(x−)

which is equivalent to showing that

lim
ε→0

∫
R
f(x− y)gε(y)dy − αf(x+)− βf(x−) = 0.

We now insert the definitions of α and β, so we want to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy −

∫ ∞
0

f(x−)g(y)dy = 0.

We can prove this if we show that

lim
ε→0

∫
−∞

f(x− y)gε(y)dy −
∫ 0

−∞
f(x+)g(y)dy = 0

and also

lim
ε→0

∫ ∞
0

f(x− y)gε(y)dy −
∫ ∞
0

f(x−)g(y)dy = 0.

The argument is the same for both of these, so proving one of them is sufficient.
We choose the first.

Hence, we would like to show that by choosing ε sufficiently small, we can make∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

as small as we like. To make this precise, let us assume that “as small as we like”
is quantified by a very small δ > 0. We smash the two integrals together, writing∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy.
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Well, this is a bit inconvenient, because in the first part we have gε, but in the
second part it’s just g. So, we make a small observation,∫ 0

−∞
g(y)dy =

∫ 0

−∞
g(z/ε)

dz

ε
=

∫ 0

−∞
gε(z)dz

Above, we have made the substitution z = εy, so y = z/ε, and dz/ε = dy. The
limits of integration don’t change. By this calculation,∫ 0

−∞
f(x+)g(y)dy =

∫ 0

−∞
f(x+)gε(y)dy.

Note that f(x+) is a constant, so it’s just sitting there doing nothing. Hence, we
have computed that∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy =

∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy.

Remember that y ≤ 0 where we’re integrating. Therefore, x− y ≥ x. Moreover, by
definition

lim
y↑0

f(x− y) = f(x+) =⇒ lim
y↑0

f(x− y)− f(x+) = 0.

By definition of limit there exists y0 < 0 such that for all y ∈ (y0, 0)

|f(x− y)− f(x+)| < δ̃.

We are using δ̃ for now, to indicate that δ̃ is going to be something in terms of
δ, engineered in such a way that at the end of our argument we get that for ε
sufficiently small, ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣ < δ.

So, to figure out this δ̃, we use our estimate on the part of the integral from y0
to 0, ∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g||.

Above, we have used the same substitution trick to see that∫
R
|gε(y)|dy =

∫
R
|g(z)|dz = ||g||,

where ||g|| is the L1(R) norm of g. By assumption, g ∈ L1(R), so this L1 norm is
finite. Moreover, because we know that∫

R
g(y)dy = 1,

we know that

||g|| =
∫
R
|g(y)|dy ≥

∣∣∣∣∫
R
g(y)dy

∣∣∣∣ = 1.

Hence, I propose setting

δ̃ =
δ

2||g||
.
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Note that we’re not dividing by zero, by the above observation that ||g|| ≥ 1. So,
this is a perfectly decent number. Then, we have the estimate (repeating the above
estimate)∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g|| = δ

2
.

To complete the proof, we just need to estimate the other part of the integral,
from −∞ to y0. It is important to remember that

y0 < 0.

So, we wish to estimate ∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ .
Here we need to consider the two possible cases given in the statement of the
theorem separately. First, let us assume that f is bounded, which means that there
exists M > 0 such that |f(x)| ≤M holds for all x ∈ R. Hence

|f(x− y)− f(x+)| ≤ |f(x− y)|+ |f(x+)| ≤ 2M.

So, we have the estimate∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy.

We shall do a substitution now, letting z = y/ε. Then, as we have computed before,∫ y0

−∞
|gε(y)|dy =

∫ y0/ε

−∞
|g(z)|dz.

Here the limits of integration do change, because y0 < 0. Specifically y0 6= 0,
which is why the top limit changes. Now, let’s think about what happens as ε→ 0.
We’re integrating between −∞ and y0/ε. We know that y0 < 0. So, when we
divide it by a really small, but still positive number, like ε, then y0/ε → −∞ as
ε→ 0. Moreover, we know that∫ 0

−∞
|g(y)|dy <∞.

What this really means is that

lim
R→−∞

∫ 0

R

|g(y)|dy =

∫ 0

−∞
|g(y)|dy <∞.

Hence,

lim
R→−∞

∫ 0

−∞
|g(y)|dy −

∫ 0

R

|g(y)|dy = 0.

Of course, we know what happens when we subtract the integral, which shows that

lim
R→−∞

∫ R

−∞
|g(y)|dy = 0.

Since
lim
ε→0

y0/ε = −∞,
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this shows that

lim
ε→0

∫ y0/ε

−∞
|g(y)|dy = 0.

Hence, by definition of limit (see, here it comes again), there exists ε0 > 0 such
that for all ε ∈ (0, ε0), ∫ y0/ε

−∞
|g(y)|dy < δ

4(M + 1)
.

Then, combining this with our estimates, above, which we repeat here,∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy

< 2M
δ

4(M + 1)
<
δ

2
.

Therefore, we have the estimate that for all ε ∈ (0, ε0),∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

<
δ

2
+
δ

2
= δ.

Finally, we consider the other case in the theorem, which is that g vanishes
outside a bounded interval. We retain the first part of our estimate, that is∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy < δ

2
.

Next, we again observe that

lim
ε↓0

y0
ε

= −∞.

By assumption, we know that there exists some R > 0 such that

g(x) = 0∀x ∈ R with |x| > R.

Hence, we may choose ε sufficient small so that

y0
ε
< −R.

Specifically, let

ε0 =
1

−Ry0
> 0.

Then for all ε ∈ (0, ε0) we compute that

y0
ε
< −R.

Hence for all y ∈ (−∞, y0/ε) we have g(y) = 0. Thus, we compute as before using
the substitution z = y/ε,∫ y0

−∞
|f(x− y)− f(x+)||gε(y)|dy =

∫ y0/ε

−∞
|f(x− εz)− f(x+)||g(z)|dz = 0,
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because g(z) = 0∀z ∈ (−∞, y0/ε). Thus, we have the total estimate that for all
ε ∈ (0, ε0), ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

< 0 +
δ

2
≤ δ.

�
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